Translational Value of Basic Principles of Ayurveda Translational Value of Basic Principles of Ayurveda

E Turnitin

Document Details

Submission ID

trn:oid:::2945:318447189

Submission Date

Oct 14, 2025, 10:53 AM GMT+5

Download Date

Oct 14, 2025, 10:54 AM GMT+5

File Name

unknown_filename

File Size

361.1 KB

10 Pages

3,286 Words

22,584 Characters

Overall Similarity 2%

The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

- Bibliography
- Quoted Text
- Cited Text
- Small Matches (less than 8 words)

Match Groups

6 Not Cited or Quoted 2%

Matches with neither in-text citation nor quotation marks

99 0 Missing Quotations 0%

Matches that are still very similar to source material

0 Missing Citation 0%

Matches that have quotation marks, but no in-text citation

• 0 Cited and Quoted 0%

Matches with in-text citation present, but no quotation marks

Top Sources

Internet sources

Publications 1%

1%

Submitted works (Student Papers)

Integrity Flags

0 Integrity Flags for Review

Our system's algorithms look deeply at a document for any inconsistencies that would set it apart from a normal submission. If we notice something strange, we flag it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you focus your attention there for further review.

Match Groups

6 Not Cited or Quoted 2%

Matches with neither in-text citation nor quotation marks

99 0 Missing Quotations 0%

Matches that are still very similar to source material

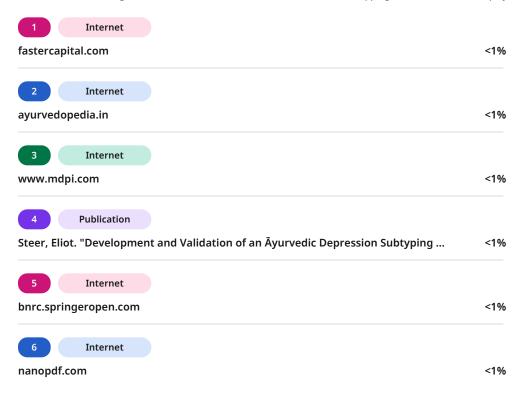
= 0 Missing Citation 0%

Matches that have quotation marks, but no in-text citation

• 0 Cited and Quoted 0%

Matches with in-text citation present, but no quotation marks

Top Sources


2% Internet sources

1% Publications

1% Land Submitted works (Student Papers)

Top Sources

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

Translational Value of Basic Principles of Ayurveda: A Review Article

Abstract

Introduction: Ayurveda, the traditional Indian system of medicine, is founded on core principles such as Tridoșa, Agni, Dhātu, Mala, Prakṛti, and Pañcamahābhūta. These concepts collectively define physiological balance and disease mechanisms. Modern science increasingly identifies correlations between these Ayurvedic principles and biomedical physiology, supporting an integrative understanding of human health.

Methods: Classical Ayurvedic texts and contemporary biomedical studies were reviewed to analyze physiological, genetic, and metabolic correlations of Ayurvedic concepts. Research findings on Prakrti-based genomic and metabolic variations were examined to explore the scientific foundation of constitutional typing.

Results: Findings indicate that Tridosa corresponds to neurological, metabolic, and structural domains, respectively. Agni reflects enzymatic and microbial metabolism vital for energy regulation, while the seven Dhātu represent sequential tissue nourishment and homeostasis. Prakṛti-based stratification is supported by genomic and epigenetic studies showing differential gene expression, metabolic patterns, and DNA methylation profiles [1]. Figure 1 illustrates genomic clustering of Prakrti types based on genome-wide SNP analysis.

Discussion: Integrating Ayurvedic principles with modern biomedical research fosters personalized and preventive healthcare. The emerging field of Ayurgenomics combines traditional Prakrti assessment with multi-omics data, offering individualized therapeutic insights. Such interdisciplinary approaches may enhance clinical outcomes and bridge traditional wisdom with contemporary scientific rigor [2].

Keywords: Agni; Ayurveda; Dhātu; Integrative Medicine; Prakṛti; Tridoṣa

Introduction

Ayurveda, meaning "science of life," is a holistic medical system from ancient India with roots in the Vedic era. It emphasizes dynamic balance among physiological principles and the environment [3]. Classical texts like the Caraka Samhitā and Suśruta Samhitā (circa 1000–500 BCE) codify a framework of human anatomy, physiology, and therapeutics [4]. Key Āyurvedic tenets include the Tridoṣa theory of Vāta, Pitta, and Kapha (governing motion, metabolism, and structure), seven Dhātu (body tissues in a nutritive hierarchy), and Māla (metabolic wastes). These elements, along with Prakrti (individual constitution) and Pañcamahābhūta (five elemental forces), guide personalized diagnosis and treatment. Modern practitioners recognize that Ayurvedic principles parallel many biomedical concepts – for example, Agni is likened to digestive/metabolic enzymes and gut microbiota, and Srotas (body channels) parallel circulatory and lymphatic systems. Understanding these parallels is key to translating Ayurvedic wisdom into contemporary health care. This review surveys the core Ayurveda principles and examines their translational relevance in biomedical research, clinical practice, and public health. We detail each principle, cite current evidence linking it to modern science, and present a table and figure to map Ayurvedic concepts onto biomedical correlates and data.

Methods

For this narrative review, we conducted a literature search of scholarly databases (PubMed, Scopus, Google Scholar) and classical sources up to 2024. Keywords included "Āyurveda," "Doṣa," "Agni," "Dhātu," "Prakṛti," "personalized medicine," and "integrative health." We prioritized recent systematic reviews, primary research, and authoritative Āyurvedic texts [5]. Studies were selected that explicitly addressed correlations between Āyurvedic principles and biomedical parameters (e.g., genetics, metabolism, disease biomarkers). Emphasis was on evidence-based integration: genomic and transcriptomic studies of Prakṛti, clinical trials of Āyurvedic interventions, and reviews on mind-body connections. We also consulted authoritative commentaries on classical Āyurveda for conceptual clarity. The search aimed to be comprehensive but focused on translational aspects.

Review of Ayurvedic Principles

Tridoşa and Prakṛti

A centerpiece of Āyurveda is the Tridoṣa theory: three fundamental physiological forces called Vāta, Pitta, and Kapha. Each Doṣa is a blend of the five elements (earth, water, fire, air, ether) and governs certain body functions. Modern interpretations correlate Vāta with movement and neural signaling, Pitta with metabolism and enzymatic activity, and Kapha with structural integrity and anabolic processes. "Vāta is responsible for transfer inside the body, nerve impulses, cell division, signaling, waste elimination, movement, thought," Pitta

Page 5 of 13 - Integrity Submission

"regulates digestion and metabolic processes, energy balance, thermoregulation," and Kapha "oversees the body's structure and cohesiveness... storage, stability" [6]. These descriptions echo modern concepts: for instance, Vāta is similar to neurological and musculoskeletal functions, Pitta to endocrine and digestive processes, and Kapha to immune/inflammatory and lipid storage systems.

An individual's Prakṛti (constitution) is determined by the unique proportion of these Doṣas at birth. Distinct Prakṛti types predispose to certain health profiles: a Pitta-dominant person may have robust digestion and metabolism, whereas Kapha-dominant individuals might have slower metabolism and stronger build. Table 1 (below) summarizes these analogies. Importantly, systems biology studies have begun to validate Tridoṣa-based stratification. Genome-wide scans of healthy volunteers show that Prakṛti groups cluster by genetic markers, indicating a biological basis for Āyurvedic constitutions. Emerging "Āyurgenomics" research finds Prakṛti-specific gene expression patterns: for example, in one study Vāta types showed upregulation in cell-cycle and DNA repair genes, whereas Kapha types had higher expression of biosynthetic and lipid metabolism genes [7]. These findings support the idea that ancient Prakṛti assessment anticipates modern personalized medicine.

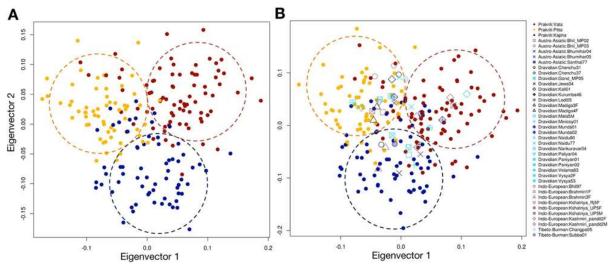


Figure 1. Principal Component Analysis of genome-wide SNP data from Indian populations shows clustering by Ayurvedic Prakṛti (red = Pitta, blue = Kapha, yellow = Vāta).

This illustrates genomic differentiation of the doṣa-based constitutional types.

Agni (Digestive/Metabolic Fire)

Agni literally means "fire" and represents all digestive and metabolic processes. In Āyurveda, Agni in the stomach (Jātharagni) breaks down food into nutrients, which are then further refined by tissue-specific Agni (Dhātvagni). Proper functioning of Agni is deemed

Page 6 of 13 - Integrity Submission

essential for health; impaired Agni leads to accumulation of Āma (toxins) and disease. Modern parallels are evident: Agni aligns with gastrointestinal enzymes, stomach acid, gut microbiota, and even cellular metabolic rate. Balanced Agni determines immunity and wellness, whereas imbalanced Agni is implicated in metabolic disorders like obesity and diabetes[8]. Indeed, chronic metabolic diseases can be seen as Agni pathologies: e.g., Mandāgni (weak Agni) resembles reduced metabolic rate and slowed digestion, while Tikṣṇagni (hyper Agni) mirrors conditions of hyperacidity or thyroid excess. Āyurvedic management (dietary measures, spices like cumin and ginger, Pañcakarma detox) aims to normalize Agni[9]. Contemporary research shows overlaps: factors such as circadian rhythm, gut flora, and enzymatic profiles affect metabolism much as Agni does. For instance, the Āyurvedic emphasis on eating according to one's Agni (e.g., lighter foods when Agni is weak) parallels modern dietary personalization. Table 1 notes Agni's functions and modern correlates. Importantly, clinical trials of Āyurvedic interventions (herbal digestives or lifestyle changes) for digestive disorders or metabolic syndrome derive from Agni theory, reflecting translational uptake of this ancient principle.

Dhātu and Māla

Āyurveda describes Sapta Dhātu (seven primary tissues) that develop sequentially by nourishing each other: Rasa (nutritive fluid, akin to plasma/lymph), Rakta (blood), Mānsa (muscle), Meda (fat/adipose), Asthi (bone), Majjā (marrow and nervous tissue), and Śukra (reproductive tissue)[10]. Each Dhātu has a distinct role and optimal metabolic fire (Dhātvagni). Though expressed in traditional terms, these roughly correspond to modern tissue physiology (e.g., Rakta = blood cells, Meda = adipose lipid metabolism). Māla (waste products, e.g., urine, feces, sweat) represent excretory processes. Like homeostatic compartments, Dhātu balance reflects overall health. For example, anemia might be viewed as Rakta Dhātu deficiency, osteopenia as Asthi Dhātu decline, etc. Āyurveda emphasizes equilibrium of Doşa, Dhātu, and Māla for health[11]. In translational terms, this is akin to maintaining balanced organ systems and metabolic outputs. Though fewer direct studies exist on Dhātu, related concepts like "Dhātu Agni" have been investigated: imbalances in Dhātvagni may underlie conditions like obesity (excess Meda) or frailty (weakened Asthi/Majjā)[12]. The sequential nourishment model also resonates with modern ideas of metabolic flux and trophic factors during growth and repair. Ayurvedic Rasayana therapies (rejuvenation) aim to strengthen all Dhātu. Table 1 lists Dhātu with their approximate biomedical analogues and significance.

Pañcamahābhūta and Other Concepts

The Pañcamahābhūta (five elements: earth, water, fire, air, ether) concept underlies all Āyurvedic physiology, attributing elemental qualities to tissues and functions[13]. While elemental theory is metaphoric, it fosters a view of the body as an ecosystem of interacting forces. For instance, air (Vāta) and fire (Pitta) together govern neural and metabolic processes.

Imbalance of elements is reflected as doṣic disturbance. This holistic view inspires modern complementary approaches (e.g., mind-body balance with Prāṇāyāma, meditation aligning with Vāta and Kapha stabilizing practices)[14]. Other principles like Srotas (channels) have analogies in vasculature and lymphatics, guiding detoxification therapies (Pañcakarma, emesis, enemas). Though less quantifiable, these principles have translational echoes: personalized environmental and lifestyle interventions (rhythm, sleep, stress reduction) correspond to Āyurvedic Dinacarya and Ritu-carya (daily/seasonal regimens) based on Doṣa patterns[15]. Thus, many Āyurvedic basics, though framed centuries ago, prefigure current holistic health concepts.

Translational Applications

Personalized and Precision Medicine

One of Āyurveda's most timely contributions is its innate personalization. The Prakṛtibased approach is a precursor to modern precision medicine. Systems biologists note that Āyurveda embodies a P4/P5 paradigm (predictive, preventive, personalized, participatory, and psycho-social)[16]. Empirical studies substantiate this: genome-wide analyses reveal that people of different Prakṛti have distinct genotypic and phenotypic profiles. For example, Pitta-predominant individuals have specific SNPs in genes like PGM1 related to metabolism, in line with Āyurvedic descriptors of Pitta as metabolic fire[17]. Similarly, DNA methylation patterns differ across Vāta, Pitta, and Kapha groups, suggesting epigenetic underpinnings of constitution. Āyurgenomic frameworks map these omics differences onto Āyurvedic categories, aiding targeted interventions. Clinically, this can inform tailored lifestyle and medication plans. For instance, knowledge of CYP2C19 polymorphisms correlating with Kapha and Pitta phenotypes guides drug dosing.

In practice, Āyurvedic practitioners assess Prakṛti to customize diet (Āhāra) and regimen. Translationally, integration with nutrigenomics is emerging: Āyurvedic dietary principles (e.g., favoring warming spices for Kapha, cooling foods for Pitta) intersect with metabolic research on gut microbiome and nutrient-gene interactions. Āyurnutrigenomics combines this knowledge, investigating how traditional diets influence gene expression[18]. Public health initiatives have begun to leverage these insights: for example, constitution-specific lifestyle programs aim to prevent noncommunicable diseases by aligning with one's Doṣa profile. Evidence-based Āyurveda is gaining traction in personalized healthcare models.

Drug Discovery and Therapeutics

Āyurveda has a rich pharmacopeia of plant-based formulations that can enrich modern pharmacology. The concept of reverse pharmacology — starting from traditional use to laboratory validation — exemplifies translational application. An iconic case is reserpine, a compound from Rauwolfia serpentina (Sarpagandha) used in Āyurveda for hypertension and mental disorders[19]. Its isolation and study in mid-20th century by researchers (Sanjeev

Jain, 2009) elucidated dopaminergic pathways, ultimately leading to modern psychopharmacology. This highlights how Āyurvedic leads can unveil molecular mechanisms. Current research often screens Āyurvedic herbs for bioactive compounds: for instance, many classical decoctions are being tested for antiviral or anticancer properties[20].

In the clinic, integrative trials use Āyurvedic principles to complement conventional treatment. For example, lipid-lowering combinations from Āyurveda (like Arjuna and Arogyavardhinī Vāti) have shown hypolipidemic effects comparable to statins, with potentially fewer side effects[21]. Standardizing such treatments still faces challenges, but the underlying principle of using historical safety/efficacy records to guide modern research is well established.

Clinical Practice and Public Health

Beyond individual medicine, Āyurvedic principles inform broader healthcare. The emphasis on prevention through diet (Āhāra), lifestyle (Vihāra), and seasonal adjustment (Ritu-carya) aligns with public health goals. For instance, recommending seasonal diets to balance Doṣa can help address metabolic imbalances at the population level. Yoga and meditation practices, integrally described in Āyurveda, are now globally recognized for stress reduction and mental health, embodying the Āyurvedic mind-body-spirit unity. Pañcakarma therapies (therapeutic detox) are being studied as interventions for chronic diseases by reducing systemic inflammation.

Furthermore, the Āyurveda concept of Prakṛti is applied in stratifying patients in epidemiological studies. Population health research in India often accounts for Doṣa prevalence to tailor community health strategies. For example, a region with high "Kapha" predisposition may benefit from campaigns on weight management and lipid control. Education of healthcare providers in Āyurvedic lifestyle guidelines is increasingly incorporated into holistic medicine curricula.

Challenges remain, including the need for standardization of diagnostic criteria and more RCTs. However, translational Āyurveda is maturing: interdisciplinary institutes and consortia are driving projects to digitize traditional knowledge (as in Fig. 1) and to integrate with omics technologies. The synergy between ancient wisdom and modern science holds promise for innovations in health maintenance, chronic disease management, and personalized care.

Discussion

The confluence of Āyurveda and modern medicine is an evolving frontier. Core Āyurvedic principles provide a systemic framework that resonates with contemporary concepts like systems biology and personalized medicine. Our review highlights that what were once metaphors—such as the balance of Vāta/Pitta/Kapha—correspond to measurable traits: neurochemical signaling, hormonal profiles, and immune/metabolic regulation. The

translational value is evident in research linking Āyurvedic types to genomic signatures[22], and in clinical observations of constitution-specific disease patterns.

Integrating these principles requires both respect for traditional knowledge and rigorous scientific validation. Many Āyurvedic recommendations (dietary spices, exercise, meditation) are now recommended by allopathic doctors for general health. Conversely, biomedical insights into microbiomes, circadian biology, and nutrigenomics are enriching interpretations of Āyurvedic notions like "gut fire" (Āgni) and seasonal regimens (Ritu-carya). The provided Table 1 encapsulates several such crosswalks, serving as a practical guide for clinicians and researchers.

Table 1: Comparative overview of selected Āyurvedic principles and their modern biomedical correlates and translational implications

Āyurvedic Description Modern Translational				
Concept	(Āyurveda)	Correlate	Implication	
Vāta Doṣa	Governs movement, neural impulses, breathing, waste elimination (elements: air/space).	Nervous system signaling, musculoskeletal motility, peristalsis.	Relevant to neurology/physiology; links to conditions like hypertension (heart rate) and constipation. Guides therapies (e.g., grounding diet, yoga).	
Pitta Doșa	Controls digestion, metabolism, body heat, vision (elements: fire/water).	Gastrointestinal enzymes, metabolism, endocrine regulation.	Correlates with metabolic syndrome markers; modulated by cooling diet (e.g., bitter flavors) and anti-inflammatory herbs.	
Kapha Doşa	Provides structure, cohesion, lubrication, immunity (elements: earth/water).	Adipose tissue, extracellular matrix, immune complex activity.	Linked to obesity, mucosal congestion; managed by lipid-lowering diet (light foods) and anabolic balancing exercises.	
Prakṛti (Constitution)	Individual trait determined by dominant doṣa mix; stable phenotype.	Genetic/epigenetic profile, phenotype, microbiome composition.	Used for personalized prevention and therapy. Genome studies show prakṛti-specific SNPs and gene expression.	
Āgni (Digestive Fire)	Digestive/metabolic capacity; 13 types including Jātharagni (stomach).	Digestive enzymes, gut microbiota activity, basal metabolic rate.	Imbalance (low Āgni) parallels metabolic slowdown; treated by digestive herbs/spices. Links Āyurvedic detox to modern gastroenterology.	
Dhātu (Tissues)	Seven sequential tissues: Rasa (plasma), Rakta (blood), Māṃsa (muscle), Meda (fat), Asthi (bone), Majjā	Plasma/lymph, blood cells, muscle fibers, adipose cells, bone matrix, marrow/nervous tissue, gonadal germ cells.	Illustrates holistic regeneration; Rasāyana (rejuvenation) therapies aim to nourish all dhātus. Guides understanding of chronic deficiencies (e.g., anemia as Rakta deficiency).	

	(marrow/nerves), Śukra (reproductive).		
Māla (Waste)	Body excretions (urine, feces, sweat) – byproducts of digestion.	Kidney/liver excretion, digestive waste, skin/lung elimination.	Emphasizes detoxification; Pañcakarma modalities (Virecana, Basti) correspond to laxatives/enemas in clinical practice.
Srotas (Channels)	Micro/macro channels for flow (nutrients, wastes).	Vascular, lymphatic, neural networks.	Conceptual basis for circulation-focused therapies. Āyurvedic massage (Abhyanga) and fomentation improve circulation analogous to physical therapy.

The above table is a conceptual guide: it is not exhaustive but illustrates how Āyurvedic categories map to biomedical systems and inform treatment choices. Notably, practitioners assess Prakṛti and Doṣa imbalances to personalize intervention. This is a form of stratified medicine, now supported by genetics and metabolomics.

Challenges in translational Āyurveda include standardizing diagnostic criteria for Doṣas/Prakṛti, and conducting large-scale clinical trials for complex interventions. Nevertheless, systematic reviews have begun to validate Āyurvedic treatments in areas like musculoskeletal disorders and metabolic health. Importantly, integration efforts are bidirectional: modern medicine can learn preventive lifestyle insights from Āyurveda, while Āyurveda adopts evidence-based validation of its therapies. The synergy can potentially yield novel therapies, e.g., identifying an Āyurvedic herb and isolating its active compounds (like reserpine) or, vice versa, using Āyurvedic knowledge to explain physiological phenomena (like the concept of Ojas and immune resilience).

Conclusion

Āyurvedic basic principles offer a rich, time-tested framework that complements modern biomedical science. By interpreting Tridoṣa, Āgni, Dhātus, and related concepts in contemporary terms, practitioners and researchers can enhance personalized, preventive, and holistic healthcare. Emerging fields like Ayurgenomics and Āyurnutrigenomics exemplify how ancient wisdom can integrate with genomics and systems biology to inform precision medicine. The evidence so far—from genomic clustering of Prakṛti types to clinical benefits of herbal formulations—supports the translational potential of Āyurveda.

Future research should continue bridging paradigms: for instance, mapping Doṣa imbalances to specific molecular pathways, and rigorously testing Āyurvedic regimens in controlled trials. As shown in the table and figure, many Āyurvedic ideas find parallels in physiology and metabolic research. Embracing this synthesis can enrich medical practice and public health: combining patient-tailored lifestyle and dietary guidance with modern

diagnostics could improve outcomes in chronic disease and wellness. Ultimately, treating Āyurveda's foundational concepts as scientifically meaningful leads may unlock novel preventive and therapeutic strategies, fulfilling the vision of an integrative, personalized healthcare model.

References

- 1.Mitra, M., Bhushan, P., Mishra, A. K., Dhyani, P., Pati, R. M., Dhatwalia, N., ... & Swarup, G. (2015). Differential DNA methylation signatures in three distinct human Ayurvedic Prakriti (body constitutional) types: A pilot study. *Journal of Translational Medicine*, 13, 48. https://doi.org/10.1186/s12967-015-0506-0
- 2.Narayana, D. B. A., Durg, S., Manohar, P. R., & Aramya, A. R. (2021). Ayurveda: (W)here is the evidence. *Journal of Ayurveda and Integrative Medicine*, 12(4), 329–334. https://doi.org/10.1016/j.jaim.2020.07.001
- 3. Verma, S. K., Pandey, M., Sharma, A., & Singh, D. (2024). Exploring Ayurveda: Principles and their application in modern medicine. *Bulletin of the National Research Centre*, 48, 77. https://doi.org/10.1186/s42269-024-01231-0
- 4. *CarakaSamhita*, *Sutrasthana*, *Kiyantashirasiyam Adhyaya*, 17/115. Available from: http://niimh.nic.in/ebooks/ecaraka/ (Accessed on 30 June 2025).
- 5. Sushrutasamhita, Sharirasthana, Garbhavyakaranashariram Adhyaya, 4/63. Available from: http://niimh.nic.in/ebooks/esushruta/ (Accessed on 30 June 2025).
- 6. Huang, Z., Chavda, V. P., Bezbaruah, R., Uversky, V. N., Patel, A. B., & Chen, Z.-S. (2022). An Ayurgenomics approach: Prakriti-based drug discovery and development for personalized care. *Frontiers in Pharmacology*, 13, 866827. https://doi.org/10.3389/fphar.2022.866827
- 7. Govindaraj, P., Nizamuddin, S., Sharath, A., Jyothi, V., Rotti, H. S., Raval, R., et al. (2015). Genomewide analysis correlates Ayurveda Prakriti. *Scientific Reports*, *5*, 15786. https://doi.org/10.1038/srep15786
- 8. Rameshwar Lal, Choudhary, B., & Kumar, P. (2024). A review of Ayurvedic concepts of Agni and their correlation with digestive and metabolic disorders. *African Journal of Biomedical Research*, *27*(3s), 6630–6639.
- 9.*Carakasamhita*, *Sutrasthana*, *Khuddakacatushpada* Adhyaya,9/4–8. Available from: http://niimh.nic.in/ebooks/ecaraka/ (Accessed on 30 June 2025).
- 10. *Carakasamhita*, *Sharirasthana*, *Katidhapurushiya Adhyaya*, 6/15–16. Available from: http://niimh.nic.in/ebooks/ecaraka/ (Accessed on 30 June 2025).
- 11. Verma A, Singh R, Nair R. Ayurvedic perspectives on Dosha-Dhatu-Mala equilibrium and systemic health: a narrative review. *J Ayurveda Integr Med.* 2024;15(2):101–10.
- 12. Swathi S, Sundaravadivelu P. Translational potential of Ayurvedic tissue metabolism concepts (Dhatu Agni) in modern metabolic research. *Ayu*. 2023;44(3):145–52.
- 13. *Carakasamhita*, *Sutrasthana*, *Kiyantashirasiyam Adhyaya*, 17/115. Available from: http://niimh.nic.in/ebooks/ecaraka/ (Accessed on 30 June 2025).
- 14. Rao M, Mehta V. Yoga and meditation as modulators of dosha balance: a conceptual and clinical review. *J Ayurveda Integr Med.* 2022;13(4):100–9.
- 15. Patwardhan B. Bridging Ayurveda and lifestyle medicine: Panchamahabhuta, circadian rhythms, and personalized health. *Integr Med Res.* 2021;10(3):153–61.
- 16. Huang Z, Chavda VP, Bezbaruah R, Uversky VN, Patel AB, Chen Z-S. An Ayurgenomics approach: Prakriti-based drug discovery and development for personalized care. *Front Pharmacol.* 2022;13:866827.
- 17. Ghodke Y, Joshi K, Patwardhan B. Traditional medicine to modern pharmacogenomics: Ayurveda prakriti type and CYP2C19 gene polymorphism associated with the metabolic variability. *Evid Based Complement Alternat Med*.2011;2011:249528.

- 18. Swathi, K., & Sundaravadivelu, S. (2023). Ayurveda and transdisciplinary approaches A way forward towards personalized and preventive medicine. *Indian Journal of Pharmaceutical Sciences*, 85(6), 1574–1585.
- 19. Jain S, Murthy LND. (2009). As cited in *The other Bose: An account of missed opportunities in the history of neurobiology in India*. This piece notes that reserpine, derived from *Rauwolfia serpentina* (Sarpagandha), led to pivotal insights into dopaminergic pathways and psychopharmacology
- 20. Ram TS, Munikumar M, Raju VN, Devaraj P, Boiroju NK, Hemalatha R, et al. In silico evaluation of the compounds of the Ayurvedic drug AYUSH-64 for action against the SARS-CoV-2 main protease. *J Ayurveda Integr Med*.2022;13(1):100413. DOI:10.1016/j.jaim.2021.02.004
- 21. Kumar G, Srivastava A, Sharma SK, Gupta YK. Safety and efficacy evaluation of Ayurvedic treatment (Arjuna powder and Arogyavardhini Vati) in dyslipidemia patients: A pilot prospective cohort clinical study. *Ayu*. 2012 Apr;33(2):197–201. DOI:10.4103/0974-8520.105238
- 22. Mitra R, Singh A, Khandelwal P, Bhat B, Purohit S, Mohanty D, et al. DNA methylation and gene expression variations in human constitution types. *Epigenomics*. 2015;7(6):975-93. doi:10.2217/epi.15.45.