Rectal Drug Administration and Ayurvedic Basti Therapy: An Integrative Narrative Review
Main Article Content
Abstract
Background: Rectal drug administration remains a clinically valuable but relatively underutilized route in modern medicine. In Ayurveda, Basti therapy occupies a central therapeutic position, traditionally linked to the regulation of Vāta Doṣa and considered to exert systemic physiological effects.
Objective: This narrative review examines classical Ayurvedic descriptions of Basti alongside contemporary scientific understanding of rectal absorption, enteric neurophysiology, immune–neural interactions, and microbiota-driven signaling. The aim is to explore potential conceptual intersections and outline plausible mechanistic hypotheses relevant to integrative and translational research.
Methods: This narrative review integrates information from Ayurvedic classical texts (Saṃhitā), pharmacological literature, and recent biomedical research related to rectal drug delivery, mucosal physiology, neuroimmune communication, and gut microbiota–brain interactions.
Results and Discussion: Ayurvedic notions such as Srotas (physiological channels) and the regulation of Vāta show conceptual parallels that can be broadly compared with modern frameworks involving mucosal permeability, lymphatic and venous transport, and enteric nervous system (ENS) activity. Traditional Basti formulations, which combine honey, salt, lipids, and herbal decoctions, echo several principles of modern excipient design. Potential mechanisms by which Basti may exert systemic effects—though not yet experimentally confirmed for classical formulations—include ENS modulation, neuroimmune interactions, microbiota-mediated metabolite signaling, and lymphatic-assisted absorption. These interpretive bridges suggest that Basti-inspired strategies may offer translational value for designing hybrid rectal drug-delivery systems.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
This article is published under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Authors retain copyright of their work and grant the International Journal of Ayurveda360 a non-exclusive license to publish, distribute, and reproduce the work in any medium, provided the original work is properly cited.
The CC BY 4.0 license permits unrestricted use, distribution, and reproduction in any medium, including commercial use, as long as appropriate credit is given to the original author(s) and source.
How to Cite
References
1) de Boer AG, Moolenaar F, de Leede LG, Breimer DD. Rectal drug administration: clinical pharmacokinetic considerations. Clin Pharmacokinet. 1982 Jul-Aug;7(4):285–311. doi:10.2165/00003088-198207040-00002. PMID:6126289.
2) Hua S. Physiological and pharmaceutical considerations for rectal drug formulations. Front Pharmacol. 2019 Oct 16;10:1196. doi:10.3389/fphar.2019.01196. PMID:31680970; PMCID:PMC6805701.
3) Agniveśa. Carakasaṃhitā. Sūtrasthāna, Vātakalākalīyā-adhyāya, 12/8 [Internet]. Ayurveda360; cited 2025 Nov 25. Available from: https://ayurveda360.in/ebooks-esamhita-ecaraka-sutrasthana-vatakalakaleeya-adhyaya/
4) Agniveśa. Carakasaṃhitā. Sūtrasthāna, Kiyantaḥśirasīyā-adhyāya, 17/118 [Internet]. Ayurveda360; cited 2025 Nov 25. Available from: https://ayurveda360.in/ebooks-esamhita-ecaraka-sutrasthana-kiyantahshiraseeya-adhyaya/
5) Suśruta. Suśruta Saṃhitā. Cikitsāsthāna, Neṭrabasti-vyāpat-cikitsitam, 36/4 [Internet]. Ayurveda360; cited 2025 Nov 25. Available from: https://ayurveda360.in/ebooks-esamhita-esushruta-cikitsasthana-netrabastivyapat-cikitsa/
6) Agniveśa. Carakasaṃhitā. Śarīrsthāna, Śarīrasaṅkhyā-śarīram, 7/10 [Internet]. Ayurveda360; cited 2025 Nov 25. Available from: https://ayurveda360.in/ebooks-esamhita-ecaraka-shareeasthana-shareerasankhya-shareera/
7) Gupta S, et al. A review study of Pūriṣavāha Srotas w.s.r. to its modern perspective. Int Ayurvedic Med J. 2025 Oct; doi:10.46607/iamj3013102025.
8) Pandey K, Chaturvedi G, editors. Grahani Cikitsā Adhyāya, Charaka Saṃhitā. Varanasi, India: Chaukhambha Bhārati Academy; 2015. p.454.
9) Fleming MA 2nd, Ehsan L, Moore SR, Levin DE. The enteric nervous system and its emerging role as a therapeutic target. Gastroenterol Res Pract. 2020 Sep 8;2020:8024171. doi:10.1155/2020/8024171. PMID:32963521; PMCID:PMC7495222.
10) Auti SS, Ashok BK, Thakar AB, Shukla VJ, Ravishankar B. An experimental study to evaluate the pharmacokinetic aspect of Lekhana Basti (Emaciating/Desiccating Medicated Enema). Anc Sci Life. 2011 Oct;31(2):38–43. PMID:23284203; PMCID:PMC3530265.
11) Savrikar SS, Lagad CE. Study of preparation and standardization of ‘Mādhutailika Basti’ with special reference to emulsion stability. Ayu. 2010 Jan;31(1):1–6. doi:10.4103/0974-8520.68190. PMID:22131675; PMCID:PMC3215309.
12) Shafik A, Mostafa RM, Shafik I, Ei-Sibai O, Shafik AA. Functional activity of the rectum: a conduit organ or a storage organ or both? World J Gastroenterol. 2006;12(28):4549–4552. doi:10.3748/wjg.v12.i28.4549.
13) Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev. 2008 Mar 17;60(6):702–16. doi:10.1016/j.addr.2007.09.007. PMID:18155316; PMCID:PMC7103284.
14) Wood JD. Enteric nervous system: brain-in-the-gut. In: Physiology of the Gastrointestinal Tract. Elsevier; 2018. pp.361–372.
15) Wang H, Foong JPP, Harris NL, et al. Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunol. 2022;15:27–39. doi:10.1038/s41385-021-00443-1.
16) Parmar B, Arya R, Patel G. Harnessing probiotics: emerging strategies for health and disease management. Indian J Microbiol. 2025. doi:10.1007/s12088-025-01478-9.
17) American Academy of Pediatrics, Committee on Drugs. Alternative routes of drug administration—advantages and disadvantages. Pediatrics. 1997;100(1):143–152. doi:10.1542/peds.100.1.143.
18) De Conno F, Caraceni A, Zecca E, Spoldi E, Ventafridda V. Role of the rectal route in treating cancer pain: a randomized crossover trial of oral versus rectal morphine in opioid-naïve cancer patients. J Clin Oncol. 1995;13(4):1004–1008.
19) Niphade SR, Chaudhari VA, Bhusare SP. Opportunities for research in Basti Cikitsā: a critical review. Int J Res Ayurveda Pharm. 2025;16(1):153–155. doi:http://dx.doi.org/10.7897/2277-4343.16129.
20) Wu WM, Murakami T, Higashi Y, Yata N. Enhancement of rectal absorption of sodium ampicillin by N-acylamino acids in rats. J Pharm Sci. 1987;76(7):508–512. doi:10.1002/jps.2600760703.
21) Birnbaum AK, Kriel RL, Burkhardt RT, Remmel RP. Rectal absorption of lamotrigine compressed tablets. Epilepsia. 2000 Jul;41(7):850–853. doi:10.1111/j.1528-1157.2000.tb00252.x. PMID:10897156.
22) Yas A. Formulation and evaluation of diazepam as a rectal preparation. Tikrit J Pharm Sci. 2023;2:94–103. doi:10.25130/tjphs.2006.2.4.94.103.
23) Rathi R, Sanshita, Kumar A, Vishvakarma V, Huanbutta K, Singh I, Sangnim T. Advancements in rectal drug delivery systems: clinical trials, and patents perspective. Pharmaceutics. 2022;14(10):2210. doi:10.3390/pharmaceutics14102210.
24) Lou M, Heuckeroth RO, Butler Tjaden N. Neuroimmune crossroads: the interplay of the enteric nervous system and intestinal macrophages in gut homeostasis and disease. Biomolecules. 2024;14(9):1103. doi:10.3390/biom14091103.
25) Grampurohit PL, Rao N, Harti SS. Effect of Anuvāsana Basti with Kṣīrabalā Taila in Sandhigata Vāta (osteoarthritis). Ayu. 2014 Apr;35(2):148–151. doi:10.4103/0974-8520.146225. PMID:25558159; PMCID:PMC4279320.
26) Pal RK, Urmaliya N, Hardeniya P. Concept of Basti: an Ayurvedic and modern perspective. Int J Contemp Res Multidiscip. 2025;4(5):121–122.
27) Li Y, Zhang Y, Wei K, He J, Ding N, Hua J, et al. Review: Effect of gut microbiota and its metabolite SCFAs on radiation-induced intestinal injury. Front Cell Infect Microbiol. 2021 Jul 9;11:577236. doi:10.3389/fcimb.2021.577236. PMID:34307184; PMCID:PMC8300561.
28) Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut–brain communication. Front Endocrinol (Lausanne). 2020;11:25. doi:10.3389/fendo.2020.00025.
29) Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461–478. doi:10.1038/s41575-019-0157-3.
30) O’Riordan KJ, Moloney GM, Keane L, Clarke G, Cryan JF. The gut microbiota-immune-brain axis: therapeutic implications. Cell Rep Med. 2025 Mar 18;6(3):101982. doi:10.1016/j.xcrm.2025.101982. Epub 2025 Mar 6. PMID:40054458; PMCID:PMC11970326.
31) Park JC, Chang L, Kwon HK, et al. Beyond the gut: decoding the gut–immune–brain axis in health and disease. Cell Mol Immunol. 2025;22:1287–1312. doi:10.1038/s41423-025-01333-3.
32) Zhang H, Luan J, He L, Pan X, Zhang H, Li Y, Li H. Role of the gut-brain axis in neurological diseases: molecular connections and therapeutic implications (Review). Int J Mol Med. 2025 Nov;56(5):192. doi:10.3892/ijmm.2025.5633. Epub 2025 Sep 12. PMID:40937571; PMCID:PMC12440273.
33) Muller PA, Koscsó B, Rajani GM, Stevanovic K, Berres ML, Hashimoto D, et al. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell. 2014 Jul 17;158(2):300–313. doi:10.1016/j.cell.2014.04.050. Erratum in: Cell. 2014 Aug 28;158(5):1210. PMID:25036630; PMCID:PMC4149228.