Kāśāhara Mahākaṣāya: An Exploratory Review of Its Constituents, Pharmacodynamic Attributes and Experimental Evidences with Special Reference to Respiratory Disorders
DOI:
https://doi.org/10.63247/3048-7390.vol.2.issue3.11Keywords:
Kāśāhara Mahākaṣāya, bronchial asthma, anti-inflammatory, immunomodulatory, Ayurveda, respiratory disordersAbstract
Introduction: Respiratory disorders described under Śvāsa and Kāsa in Ayurveda are characterized by airway inflammation, bronchoconstriction, mucus hypersecretion, and recurrent infections. Kāśāhara Mahākaṣāya, described by Ācārya Caraka, is a classical group of ten herbs indicated for cough-dominant and Kapha–Vāta predominant respiratory conditions. Despite its extensive traditional use, scientific appraisal of its constituents and pharmacological relevance remains limited. The present review aims to analyze the classical Ayurvedic attributes, phytochemical constituents, and contemporary evidence of the drugs comprising Kāśāhara Mahākaṣāya, with special reference to respiratory disorders.
Methods: Classical Ayurvedic texts including the Caraka Saṃhitā and various Nighaṇṭus were reviewed to elucidate the pharmacodynamic properties (Rasapañcaka, Doṣaghnatā, and Rogaghnatā) of the constituent drugs. For contemporary evidence, scientific databases such as PubMed and Google Scholar were searched for experimental and clinical studies focusing on anti-inflammatory, antitussive, bronchodilatory, anti-asthmatic, antioxidant, immunomodulatory, and antimicrobial activities relevant to airway inflammation.
Results: The drugs of Kāśāhara Mahākaṣāya exhibit complementary pharmacological actions including suppression of pro-inflammatory cytokines, mast cell stabilization, bronchodilation, modulation of Th2/Th17 immune responses, enhancement of antioxidant defense mechanisms, antitussive effects, and antimicrobial activity. These actions correlate with Ayurvedic descriptions of Kāśāhara, Śvāsahara, Śothahara, and Rasāyana properties. Experimental and limited clinical evidence supports their efficacy in attenuating airway inflammation, bronchospasm, oxidative stress, and allergic responses.
Conclusion: Kāśāhara Mahākaṣāya represents a rational, multi-targeted therapeutic approach for respiratory disorders, particularly bronchial asthma and allergic airway diseases. However, further well-designed clinical trials employing standardized formulations are warranted to establish its efficacy and role in integrative respiratory care.
References
1. Granato, D. (2016). Reflectance of botanical, production and geographical origin on the unique compositional traits of purple grape juices (Doctoral dissertation, Wageningen University and Research).
2. Akaberi, M., & Hosseinzadeh, H. (2016). Grapes (Vitis vinifera) as a potential candidate for the therapy of the metabolic syndrome. Phytotherapy Research, 30(4), 540-556.
3. Nassiri‐Asl, M., & Hosseinzadeh, H. (2016). Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive constituents: an update. Phytotherapy Research, 30(9), 1392-1403.
4. Zhou, D. Y., Du, Q., Li, R. R., Huang, M., Zhang, Q., & Wei, G. Z. (2011). Grape seed proanthocyanidin extract attenuates airway inflammation and hyperresponsiveness in a murine model of asthma by downregulating inducible nitric oxide synthase. Planta Medica, 77(14), 1575–1581. https://doi.org/10.1055/s-0030-1270957
5. Arora, P., Ansari, S. H., Najmi, A. K., Anjum, V., & Ahmad, S. (2016). Investigation of anti-asthmatic potential of dried fruits of Vitis vinifera L. in animal model of bronchial asthma. Allergy, Asthma & Clinical Immunology, 12, 1-12. DOI: https://doi.org/10.1186/s13223-016-0145-x
6. Radulescu, C., Buruleanu, L. C., Nicolescu, C. M., Olteanu, R. L., Bumbac, M., Holban, G. C., & Simal-Gandara, J. (2020). Phytochemical profiles, antioxidant and antibacterial activities of grape (Vitis vinifera L.) seeds and skin from organic and conventional vineyards. Plants, 9(11), 1470.
7. Filocamo, A., Bisignano, C., Mandalari, G., & Navarra, M. (2015). In vitro antimicrobial activity and effect on biofilm production of a white grape juice (Vitis vinifera) extract. Evidence‐Based Complementary and Alternative Medicine, 2015(1), 856243. DOI: https://doi.org/10.1155/2015/856243
8. Juang, L. J., Sheu, S. J., & Lin, T. C. (2004). Determination of hydrolyzable tannins in the fruit of Terminalia chebula Retz. by high‐performance liquid chromatography and capillary electrophoresis. Journal of Separation Science, 27(9), 718-724. DOI: https://doi.org/10.1002/jssc.200401741
9. Pulliah T. Encyclopedia of world medicinal plants. New Delhi, India: Regency Pub Vol 4, pp1931-1934.
10. Xie, F. (2016). Broad-spectrum antiviral effect of chebulagic acid and punicalagin on respiratory syncytial virus infection in a BALB/c model. Int J Clin Exp Pathol, 9(2), 611-619.
11. Bag, A., Kumar Bhattacharyya, S., Kumar Pal, N., & Ranjan Chattopadhyay, R. (2013). Anti-inflammatory, anti-lipid peroxidative, antioxidant and membrane stabilizing activities of hydroalcoholic extract of Terminalia chebula fruits. Pharmaceutical Biology, 51(12), 1515–1520. https://doi.org/10.3109/13880209.2013.799709
12. ul Haq, R., Wahab, A., Ayub, K., Mehmood, K., Sherkheli, M. A., Khan, R. A., & Raza, M. (2013). Antitussive efficacy and safety profile of ethyl acetate fraction of Terminalia chebula. International Scholarly Research Notices, 2013(1), 256934. DOI: https://doi.org/10.1155/2013/256934
13. Variya, B. C., Bakrania, A. K., & Patel, S. S. (2016). Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacological Research, 111, 180–200. https://doi.org/10.1016/j.phrs.2016.06.013
14. Nosal'ova, G., Mokrý, J., & Hassan, K. T. (2003). Antitussive activity of the fruit extract of Emblica officinalis Gaertn. (Euphorbiaceae). Phytomedicine, 10(6-7), 583-589. DOI: https://doi.org/10.1078/094471103322331872
15. Biswas, T. K., Chakrabarti, S., Pandit, S., Jana, U., & Dey, S. K. (2014). Pilot study evaluating the use of Emblica officinalis standardized fruit extract in cardio-respiratory improvement and antioxidant status of volunteers with smoking history. Journal of Herbal Medicine, 4(4), 188-194. DOI: https://doi.org/10.1016/j.hermed.2014.09.002
16. Suresh, K., & Vasudevan, D. M. (1994). Augmentation of murine natural killer cell and antibody dependent cellular cytotoxicity activities by Phyllanthus emblica, a new immunomodulator. Journal of Ethnopharmacology, 44(1), 55-60. DOI: https://doi.org/10.1016/0378-8741(94)90099-X
17. Qureshi, H., Asif, S., Ahmed, H., Al-Kahtani, H. A., & Hayat, K. (2016). Chemical composition and medicinal significance of Fagonia cretica: a review. Natural Product Research, 30(6), 625–639. https://doi.org/10.1080/14786419.2015.1036268
18. Ahmad, R., Almubayedh, H., Ahmad, N., Naqvi, A. A., & Riaz, M. (2020). Ethnobotany, ethnopharmacology, phytochemistry, biological activities and toxicity of Pistacia chinensis subsp. integerrima: A comprehensive review. Phytotherapy Research, 34(11), 2793–2819. https://doi.org/10.1002/ptr.6720
19. Adusumalli, S. U. R. E. N. D. R. A., Ranjit, P. M., & Harish, M. S. (2013). Antiasthmatic activity of aqueous extract of Pistacia integerrima galls. Int J Pharm Pharm Sci, 5(supplement 2), 116-21.
20. Janbaz, K. H., Hassan, W., Mehmood, H., & Gilani, A. H. (2015). Antidiarrheal, antispasmodic and bronchodilator activities of Pistacia integerrima are mediated through dual inhibition of muscarinic receptors and Ca++ influx. Science, Technology and Development, 34(1), 52. DOI: https://ecommons.aku.edu/pakistan_fhs_mc_bbs/327
21. Rana, S., Shahzad, M., & Shabbir, A. (2016). Pistacia integerrima ameliorates airway inflammation by attenuation of TNF-α, IL-4, and IL-5 expression levels, and pulmonary edema by elevation of AQP1 and AQP5 expression levels in mouse model of ovalbumin-induced allergic asthma. Phytomedicine, 23(8), 838-845. DOI: https://doi.org/10.1016/j.phymed.2016.04.006
22. Shirole, R. L., Shirole, N. L., Kshatriya, A. A., Kulkarni, R., & Saraf, M. N. (2014). Investigation into the mechanism of action of essential oil of Pistacia integerrima for its antiasthmatic activity. Journal of Ethnopharmacology, 153(3), 541-551. DOI: https://doi.org/10.1016/j.jep.2014.02.009
23. Javaid, U., Javaid, S., Ashraf, W., Rasool, M. F., Noman, O. M., Alqahtani, A. S., … Imran, I. (2021). Chemical Profiling and Dose-Dependent Assessment of Fear Reducing and Memory-Enhancing Effects of Solanum virginianum in Rats. Dose-Response, 19(1), 1559325821998486. https://doi.org/10.1177/1559325821998486
24. Raja, W., Nosalova, G., Ghosh, K., Sivova, V., Nosal, S., & Ray, B. (2014). In vivo antitussive activity of a pectic arabinogalactan isolated from Solanum virginianum L. in Guinea pigs. Journal of Ethnopharmacology, 156, 41–46. https://doi.org/10.1016/j.jep.2014.08.012
25. Govindan, S., Viswanathan, S., Vijayasekaran, V., & Alagappan, R. (2004). Further studies on the clinical efficacy of Solanum xanthocarpum and Solanum trilobatum in bronchial asthma. Phytotherapy Research, 18(10), 805-809. DOI: 10.1002/ptr.1555. PMID: 15551394.
26. Vadnere, G. P., Gaud, R. S., Singhai, A. K. (2008). Evaluation of anti-asthmatic property of Solanum xanthocarpum flower extracts. Pharmacol Online, 1, 513-522.
27. Pandey, R. K., Shukla, S. S., Jain, A., Jain, A., Gupta, V. B., Deb, L. (2018). Evaluation of comparative immunomodulatory potential of Solanum xanthocarpum root and fruits on experimental animal. Indian J Pharm Educ, 52(4 Suppl 2), 237-245. https://doi.org/10.5530/ijper.52.4s.103
28. Nithya, M., Ragavendran, C., & Natarajan, D. (2018). Antibacterial and free radical scavenging activity of a medicinal plant Solanum xanthocarpum. Int J Food Prop, 21, 313–327. https://doi.org/10.1080/10942912.2017.1409236
29. Pardhi, P., Jain, A. P., Ganeshpurkar, A., & Rai, G. (2010). Anti-microbial, anti-oxidant and anthelmintic activity of crude extract of Solanum xanthocarpum. Pharmacog J, 2(11), 400-404. https://doi.org/10.1016/S0975-3575(10)80022-7
30. Goyal, B. M., Bansal, P., Gupta, V., Kumar, S., Singh, R., & Maithani, M. (2010). Pharmacological potential of Boerhaavia diffusa: an overview. Int J Pharm Sci Drug Res, 2(1), 17-22.
31. Mungantiwar, A. A., Nair, A. M., Shinde, U. A., Dikshit, V. J., Saraf, M. N., Thakur, V. S., & Sainis, K. B. (1999). Studies on the Immunomodulatory Effects of Boerhaavia diffusa Alkaloidal Fraction. Journal of Ethnopharmacology, 65, 125–131. DOI: https://doi.org/10.1016/S0378-8741(98)00153-6
32. Rachh, P. R., Rachh, M. R., Modi, D. C., Shah, B. N., Bhargava, A. S., Patel, N. M., & Rupareliya, M. T. (2009). In-vitro Evaluation of Antioxidant Activity of Punarnava (Boerhaavia diffusa Linn.) Int J Pharm Res, 1(1), 36-40.
33. Girish, H. V., & Satish, S. (2008). Antibacterial Activity of Important Medicinal Plants on Human Pathogenic Bacteria-a Comparative Analysis. World Applied Sciences Journal, 5(3), 267-271. DOI: http://www.idosi.org/wasj/wasj5(3)/1.pdf
34. Mahesh, A. R., Kumar, H., Ranganath, M. K., & Devkar, R. A. (2012). Detail study on Boerhaavia diffusa plant for its medicinal importance-A Review. Res J Pharm Sci, 1(1), 28-36.
35. Sasi kala, M., Vijay, S. K., & Gauthaman, K. (2009). Relevance of the use of Alternative Medicine for Bronchial Asthma: A review. J Young Pharm, 1(2), 184-189. DOI: 10.4103/0975-1483.55754
36. Bagalkotkar, G., Sagineedu, S. R., Saad, M. S., & Stanslas, J. (2006). Phytochemicals from Phyllanthus niruri Linn. and their pharmacological properties: a review. Journal of Pharmacy and Pharmacology, 58(12), 1559-1570. DOI: https://doi.org/10.1211/jpp.58.12.0001
37. Nworu, C. S., et al. (2010). The effects of Phyllanthus niruri aqueous extract on the activation of murine lymphocytes and bone marrow-derived macrophages. Immunol Invest, 39, 245–267. DOI: https://doi.org/10.3109/08820131003599585
38. Yadav, V., Krishnan, A., & Vohora, D. (2020). A systematic review on Piper longum L.: Bridging traditional knowledge and pharmacological evidence for future translational research. Journal of Ethnopharmacology, 247, 112255. https://doi.org/10.1016/j.jep.2019.112255
39. Wang, B., Zhang, Y., Huang, J., Dong, L., Li, T., & Fu, X. (2017). Anti-inflammatory activity and chemical composition of dichloromethane extract from Piper nigrum and P. longum on permanent focal cerebral ischemia injury in rats. Revista Brasileira de Farmacognosia, 27(3), 369-374. DOI: https://doi.org/10.1016/j.bjp.2017.02.003
40. Vaghasiya, Y., Nair, R., & Chanda, S. (2007). Investigation of Some Piper Species for Anti—Bacterial and Anti—Inflammatory Property. International Journal of Pharmacology, 3(5), 400-405.
41. Choudhary, G. P. (2006). Mast cell stabilizing activity of Piper longum Linn. http://medind.nic.in/iac/t06/i2/iact06i2p112.pdf
42. Kaushik, D., Rani, R., Kaushik, P., Sacher, D., & Yadav, J. (2012). In vivo and in vitro antiasthmatic studies of plant Piper longum Linn. Int J Pharmacol, 8(3), 192-197. DOI: 10.3923/ijp.2012.192.197
43. Saha, P., Durugkar, S., Jain, S., Shantanu, P. A., Panda, S. R., Jala, A., ... & Naidu, V. G. M. (2022). Piperine attenuates cigarette smoke-induced oxidative stress, lung inflammation, and epithelial–mesenchymal transition by modulating the SIRT1/Nrf2 axis. International Journal of Molecular Sciences, 23(23), 14722. DOI: https://doi.org/10.3390/ijms232314722
44. Aswar, U., Shintre, S., Chepurwar, S., & Aswar, M. (2015). Antiallergic effect of piperine on ovalbumin-induced allergic rhinitis in mice. Pharmaceutical Biology, 53(9), 1358-1366. DOI: https://doi.org/10.3109/13880209.2014.982299
45. Kim, S. H., & Lee, Y. C. (2009). Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin‐induced asthma model. Journal of Pharmacy and Pharmacology, 61(3), 353-359. DOI: https://doi.org/10.1211/jpp.61.03.0010
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 Dr. Deval Kevadiya, Dr. Abhishek Upadhyay, Dr. Pravin Shamrao Sawant (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.










\










